Polyelectrolyte multilayer film on decellularized porcine aortic valve can reduce the adhesion of blood cells without affecting the growth of human circulating progenitor cells.
نویسندگان
چکیده
Polyelectrolyte multilayer film modification could be an effective method to reduce the immunological and inflammatory response of the xenogeneic scaffold in vivo, and may also be applied to tissue-engineered heart valve in contact with blood. The objectives of this study are to test heparin-chitosan multilayer film as an antithrombotic coating reagent for decellularized aortic heart valve and the biocompatibility of the modified valvular surface. The adhesion and geometric deformation of platelets were demonstrated by scanning electron microscopy. The quantitative assay of platelet activation was determined by measuring the production of soluble P-selectin. Moreover, the leukocytes' adhesion, erythrocyte hemolysis, and whole blood clotting time studies were performed to gain information on the hemocompatibility of this biomaterial. Human-blood-derived endothelial progenitor cells (EPCs) were cultured and the adhesion and growth of EPCs on the surface-modified PDAV were assessed. The results showed that heparin-chitosan multilayer film could be coated on the decellularized valvular scaffolds, and improved their hemocompatibility with respect to a substantial reduction of platelet adhesion and activation. The modified valve also significantly reduced leukocytes adhesion, erythrocyte hemolysis, and whole blood clotting time. Seeding with EPCs achieved a confluent monolayer on the surface of the decellularized matrix. The in vitro studies performed in this work suggest that it may be reasonable to use heparin-chitosan multilayer film as a means of surface modification to improve the blood compatibility of decellularized valvular scaffold.
منابع مشابه
The Effect of Heparin-VEGF Multilayer on the Biocompatibility of Decellularized Aortic Valve with Platelet and Endothelial Progenitor Cells
The application of polyelectrolyte multilayer films is a new, versatile approach to surface modification of decellularized tissue, which has the potential to greatly enhance the functionality of engineered tissue constructs derived from decellularized organs. In the present study, we test the hypothesis that Heparin- vascular endothelial growth factor (VEGF) multilayer film can not only act as ...
متن کاملThe effect of microRNA-125 on the adhesion molecule expression of integrin beta2 and adhesive determination of endothelial cells isolated from human aorta to monocyte
Background: The immune-mediated responses in vascular cells may include the increased expression of endothelial adhesion molecules, leukocyte rolling and infiltration, cellular lipid dysregulation and vascular smooth muscle cells (VSMCs) differentiation. Investigating the cellular and molecular events involved in the rolling process is useful for treatment or prevention of the vessel stenosis es...
متن کاملEffect of two different intensity of physical activity on circulating endothelial progenitor cells (EPC) in healthy young women
The purpose of this study was to determine the effect of two different intensities of physical activity on circulating endothelial progenitor cells (EPC) in healthy young women. For this purpose, 15 female students from volunteers were randomly selected via questionnaire (group 1: mean age 22 ±1/8 years, BMI 20/81±1/91 kg/m2, n = 8. group 2: mean age 21 ±1/5 years, BMI 20/38 ± 1/66 kg/m2, ...
متن کاملAdvances in Hematopoietic Stem Cell Mobilization and Peripheral Blood Stem Cell Transplantation
Hematopoietic stem/progenitor cells (HSPCs) which give rise to different blood cell types are present within the bone marrow microenvironment, especially in flat bones such as skull, vertebrae, pelvis and chest. Interacting factors such as stromal derived factor-1/CXCR4, very late antigen-4/vascular cell adhesion molecule-1, Lymphocyte function-associated antigen-1/ intercellular adhesion molec...
متن کاملA New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biomaterialia
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2012